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ABSTRACT

A free-flight wind-tunnel investigation was
conducted on a generic fighter model with
forebody pneumatic vortex control for high-
angle-of-attack directional control. This is
believed to be the first flight demonstration of
a forebody blowing concept integrated into a

closed-loop flight control system for stability
augmentation and control. The investigation
showed that the static wind tunnel estimates

of the yaw control available generally agreed
with flight results. The control scheme for
the blowing nozzles consisted of an on/off

control with a deadband. Controlled flight
was obtained for the model using forebody
blowing for directional control to beyond 45 °
angle of attack.

NOMENCLATURE

B blowing on
C 1 rolling moment coefficient

C113 /)C1//)13, deg _

'Aerospace Engineer, Senior Member AIAA
* Aerospace Engineer, Member AIAA
* Research Associate, Student Member AIAA

Graduate Student

C n

Cnl3

Cy

CYI3

Cg
FCS
OFF

P
q
r

i-
s
TV

8_
A

0

yawing moment coefficient

/)Cn/_)_, deg -1

sideforce coefficient

_Cy/Ol3, deg"

Blowing coefficient

flight control system
all yaw controls disabled
roll rate, deg/sec
pitch rate, deg/sec
yaw rate, deg/sec

yaw rate acceleration, deg/sec 2
Laplace operator
yaw thrust vectoring on

angle of attack, deg

angle of sideslip, deg

aileron deflection, deg

rudder deflection, deg

increment

nozzle pointing orientation

nozzle circumferential orientation

INTRODUCTION

Emphasis in expansion of the conventional
flight envelope of fighter aircraft has
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stimulated research in innovative concepts for
high-angle-of-attack control. At high angles
of attack, the need for large yawing moments
for roll coordination is in conflict with
conventional tail effectiveness which
decreases as the tail is immersed in the low

energy wake of the wing. Two of the
primary concepts which manipulate the
forebody flow to provide yawing moments
that have been studied are mechanical

systems (deflectable forebody strakes) and
pneumatic systems (forebody blowing).
Work with the mechanical systems has
progressed from initial concept development _
to flight demonstration on the NASA High-
Angle-of-Attack Research Vehicle (HARV).
Pneumatic forebody controls have been
investigated through numerous static wind
tunnel and analytical studies 2"7. A flight
demonstration of control power available
with forebody blowing was conducted with
the X-29 aircraft using a system where the
pilot manually opened and closed valves to
control blowing on the forebody s. The X-29
experiment demonstrated the validity of the
wind tunnel derived moments obtained with

forebody blowing. A simulation study
evaluating on/off forebody blowing
integrated into a flight control system 9 for
high angle-of-attack control showed that the
concept was promising.

This paper highlights results of the first flight
demonstration of forebody blowing for yaw
control at high angles of attack integrated into
a flight control system for stability
augmentation as well as control. A primary
objective of the test was to evaluate the
feasibility of pneumatic controls with an
on/off control scheme in light of questions
such as whether the lags associated with
pneumatic controls would inhibit the
effectiveness as a closed loop controller. A
generic fighter airplane configuration was
selected which was fitted with conventional,
thrust vectoring, and forebody pneumatic
controls. A flight control system was
developed, and the effectiveness of
pneumatic controls was demonstrated in
flight without the use of rudders or thrust

vectoring for additional yaw control. Data
obtained in a previous static wind tunnel test
were also compared with the dynamic test
results.

DESCRIPTION OF TEST

Model

The model used in this study was a generic
fighter model with a circular cross-section
fuselage, fiat-plate wing and tail surfaces
with sharp double-beveled leading and
trailing edges (fig 1). A similar model for
captive wind tunnel tests has been extensively
tested l°'l_. The model used in the current

study was built to allow free-flight testing of
configurational effects and forebody controls.
The roll/yaw inertia ratio (Ix/Iz = 7.74),
which is a dominant factor in the lateral-

directional dynamic response, was
representative of many current fighter
aircraft.
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Figure 1. Sketch of model. (dimensions in
inches)

The forebody of the model was a circular

cross-section tangent ogive with a fineness
ratio of 4 with strakes protruding normal to
the surface at the 75 ° radial location from the

top of the forebody as shown in figure 1.
Slotted blowing nozzles oriented as shown in
figure 2 were also incorporated on the

forebody. High pressure air was supplied to
the nozzles through valves which were

operated by servos controlled by the flight



control computer. Calibrations of mass flow
rate and supplied pressure were conducted
prior to the flight test series, and pressures
were selected based on tunnel speed to obtain

the desired C_t. The pneumatic lag of the
system beyond the valves was not measured;
however, the valves were connected to the

nozzles through 0.213" I.D. tubing over a
12" distance. The valve characteristics were

such that the mass flow rate through the valve
was essentially 0 until the valve reached 30%
open. At 60% open, the mass flow rate was
at nearly the maximum value which remained
constant as the valve opened further. All

free-flight tests were conducted at Ct.t ---
0.0077.
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Flow direction

a) Top view showing pointing angle b) Front view showing radial angle

Figure 2. Forebody nozzle orientation.

In addition to forebody blowing, the model
incorporated ailerons, rudders, differential
horizontal tail deflections and yaw thrust
vectoring for lateral-directional control, and
symmetric horizontal tail deflections and pitch
thrust vectoring for pitch control.

Free-Flight Test Technique

The wind tunnel free-flight tests were
conducted in the Langley 30- by 60-Foot
Tunnel with the technique illustrated in figure
3. With this technique, the remotely
controlled dynamically scaled model was

flown in the open test section of the 30- by
60-Foot Tunnel. A photograph of the model
flying during the test is shown in figure 4.
The wind tunnel free-flight tests were used to
evaluate first the flying characteristics of the
model with the various control laws, and then

to evaluate controllability with forebody
blowing as the only yaw controller. Model
motions were measured and pilot comments
recorded for each flight condition.

Olmclto¢

Figure 3. Free-flight test technique.

Figure 4. Generic model during free-flight.

During the free-flight tests, the model was
attached to an umbilical chord which supplied
pneumatic and electrical power and control
signals to the model. The chord also

contained a 1/8" steel safety cable that was
controlled by a safety cable operator using a
high-speed pneumatic winch. The safety
cable operator helped launch the model at the
start of a test, retrieve the model at the end of
a test, keep tension off the model from the
umbilical cable during the test, and would
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attempt to protect the model in an out-of-
control situation by pulling the model out of
the airstream.

In addition to the safety cable operator, the
model flight crew consisted of a pitch pilot,
thrust pilot, and a roll/yaw pilot. These
piloting functions were located in the
positions shown in figure 3 to afford the best
view for controlling the pertinent axes. The
separation of the piloting duties is very
advantageous for several reasons. By
separating pilots by axes, effective
evaluations can more easily be obtained since
the pilot controls only the axes he evaluates.
Control of the model is also enhanced by
providing the optimal visual perspective for
control of each axis. Due to dynamic scaling,
the model motions are substantially faster
than that of a full-scale airplane, so separation
of piloting tasks is beneficial for that reason
as well.

The primary component in the free-flight
control system (FCS) is a digital
minicomputer programmed with the flight
control laws. The computer processed
sensor information from the model and

command inputs from the pilots to generate
command signals that drive the high-speed
pneumatic actuators onboard the model. The
data sensors on the model included a three-

axis rate gyro to measure angular rates, an
accelerometer package to measure normal,
axial and side-force accelerations, a boom-

mounted ff./13vane sensor on the starboard

wing tip for angle of attack and sideslip,
potentiometers to measure control surface
positions, and a transducer to measure
pressure at forebody valves for mass flow
calculations. These sensor data, along with
pilot control inputs, were recorded in the
computer for post-flight analysis. Angular

rates, linear accelerations and if/J3 vane

sensor data were filtered with a first order lag
filter with a cut-off frequency of 20 Hertz

before entering the FCS. Additionally, o_and

1_from the wingtip mounted vanes were

corrected for angular rates, upwash, and
sidewash. Post-flight data reduction included
calculation of angular accelerations by
differentiation of measured angular rate data.

Control System Description

A flight control system was designed using
the measured static aerodynamic
characteristics. The control system utilized
gains scheduled with angle of attack for state
feedbacks (p,q,r) and for static stability
augmentation. The design of the flight
control system was evaluated using linearized
aerodynamic math models over the range of
angle of attack expected to be flown. The
complete control laws were then inplemented
on the flight control computer for the free-
flight tests. During the tests, severe electrical
noise problems on several channels to and
from the model occurred, and due to time
constraints, those channels were deactivated.
Loss of those channels resulted in fixed

stabilator and rudder positions, with only
pitch and yaw thrust vectoring, ailerons, and
forebody blowing available for control.
Control system gains were not modified to
account for the deactivation of the rudder and

horizontal tails. All of the data presented
herein was flown with the stabilators and

rudder at a fixed deflection of 0 °. The flight
control system block diagram (without rudder
and stabilators) is shown in figure 5.

I,,J -t__7_J )_ LI 1

Figure 5. Flight control system block
diagram.

AERODYNAMIC
CHARACTERISTICS

Static Results

Static wind tunnel tests were conducted with

the model in the Langley 30- by 60- Foot
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Tunnel to evaluate the effectiveness of the

slotted nozzles. The basic stability and
control characteristics of the configuration
were obtained in addition to the effectiveness

of the blowing concept. A summary of the
data will be presented here. Figure 6 shows
the static lateral-directional stability
characteristics of the configuration.
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Figure 6. Unaugmented static lateral-
directional stability.

At angles of attack below 25 ° , the
configuration exhibits static directional

stability. Above (x = 25 °, the directional

stability rapidly decreases to neutral stability

by approximately (x = 35 °. Corresponding

lateral stability data also show unstable

dihedral effect at ct = 35 °. These

characteristics would predict yaw departure
susceptibility in this region.

Control power available is shown in figure 7
for the conventional aerodynamic control
effectors. These data show that the rudder

control power decreases rapidly at o_> 30 °.

This is typical of most airplane designs;
however, as flight is conducted at higher
angles of attack, more yaw control is required
to coordinate turns. This is the primary
reason alternate control devices, such as

thrust vectoring and forebody vortex
controls, have been studied. The data also

show a slight adverse yaw due to aileron

deflection above cz = 20 °. Aileron control

power also diminishes rapidly as the wing
stall progresses.
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Figure 7. Effectiveness of conventional
controls.

Figure 8 shows the effectiveness of blowing
on the lateral-directional coefficients. The

results indicate that the moments produced
are nonlinear with mass flow rate; however,
the nozzles do generate large amounts of
yawing moment control over a large angle-of-
attack range. Additionally, a large rolling
moment in the opposite direction of yaw is
developed near the stall angle of attack of 35 ° .

This result is different than seen in previous
studies of other configurations 4,5where
forebody blowing produced yawing and



rolling moments in the same direction. Based
on these results, and on the physics involved,

rolling moments produced by forebody
vortex control are expected to be highly
configuration dependent.

Free-Flight Results

As mentioned previously, all free-flight data
were obtained without the use of rudder or
horizontal tail movements, and for all of the

flight data discussed, those surfaces were set
to 0 °. Flight tests were conducted with the
forebody blowing system in both open and
closed loop fashions. The open loop tests
were conducted by stabilizing the model with
conventional and thrust vectoring controls,
and then short step inputs from a nozzle were
made. The resultant model motions were

then analyzed to calculate the effectiveness of
the nozzle at that flight condition and
comparisons were made to static wind tunnel
predictions. Figure 9 shows the generally
favorable comparison with the starboard
nozzle effectiveness obtained in flight with
that measured during static wind tunnel tests.
The data show slightly more yaw control
available during flight at the higher angles of
attack than was predicted in the static tests.

Further, the time lag between the nozzle
opening and model motion gave an indication
of the flow lags associated with this
controller. An example is shown in figure 10
which indicates a time lag of approximately
0.2 seconds, model scale, between the point
at which the valve opens beyond 30%, and
the resulting maximum moment (yaw
acceleration) on the model. Implementation
of a pneumatic system on a full-scale airplane
should result in smaller lags if the system is
designed with fast acting valves very close to
the nozzles on the forebody. Nevertheless,
even with the large lags seen in the model set-
up, the system produced useable control
moments for adequate flying qualities during
the free-flight test.
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blowing, Starboard nozzle.
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Closed loop evaluations were made by flying
initially with thrust vectoring only for pitch
and yaw. After confidence was gained with
the model controllability, forebody blowing
was added to the controls.
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Figure 11. Typical time history of free-flight
demonstration.

This was followed by the disabling of the
yaw vectoring so that total yaw control was

obtained by the forebody blowing. Finally,
forebody blowing was turned off, which
resulted in the departure of the model. A time
history plot of one flight sequence is shown
in figure 11.

During flight sequences such as shown in
figure 11, pilot comments indicated slightly
better controllability when blowing was
added to the yaw thrust vectoring control.
When the thrust vectoring was turned off, a

noticeable increase in pilot workload, sideslip
excursions and model motion were noted.
Pilot comments indicated that the model was

still very controllable; however, yaw control
was "looser" and less predictable resulting in
larger model excursions. It should be noted

that the flight control system gains were
originally designed for use with rudder and
blowing in combination. When electrical

problems resulted in the disabling of the
rudder, the gains for the forebody blowing
were not changed to reflect this, so they were
not optimized in any way. Refinements of
the flight control system gains would
probably result in better flying qualities.

The last three sequences in the data of figure
11 show what happened when the blowing
was turned off. In this condition, pitch thrust
vectoring and ailerons were the only active
control devices. The model started flying out
of the test section area and could not be
recovered with full lateral stick control, so the
blowing was turned back on and the model

quickly recovered. The blowing was again
turned off, and the model exhibited a nose

slice departure.

One aspect which is important for the design
of a successful system in flight, is the
capability to generate sufficient mass flow to
provide adequate control. With the tested
control scheme, figure 12 shows the
percentage of time a forebody control valve
was open during the flights with forebody
controls used as the sole yaw control device.
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CONCLUSIONS

A model equipped with forebody pneumatic
vortex controls was flown in the NASA

Langley 30- by 60-Foot Tunnel. This
represents the first flight demonstration of
forebody pneumatic controls integrated in a
closed-loop flight control system. Results of
the test indicated good correlation with static
predictions, and also showed the on/off
control scheme produced acceptable flying
qualities and stability augmentation for this
test. The model was successfully flown
without rudder or thrust vectoring controls
for yaw to beyond 45 ° angle of attack.
During flight, the nozzles were active
approximately 40-60% of the time, which
indicates the blowing capability requirements
for such a system.
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